

22-26 June 2015

Bratislava

31st International Conference of Society for Environmental Geochemistry & Health

Heavy metal stabilization in EAFD using magnesia and Sorel cements

E. Ntinoudi¹, H. Yiannoulakis², Th. Zampetakis², A.I. Zouboulis¹, <u>E. Pantazopoulou¹</u>

¹ Department of Chemistry, Aristotle University of Thessaloniki, Greece ² R&D Center, Grecian Magnesite S.A., Thessaloniki, Greece

31st SEGH 2015

Introduction

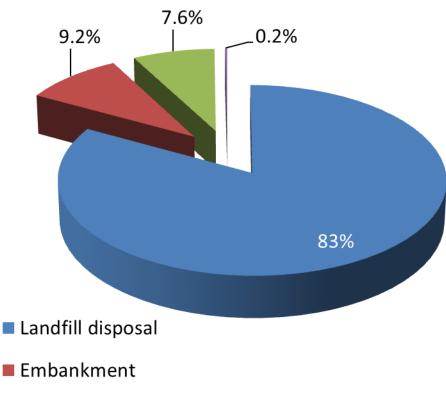
Industrial solid waste management in Greece Stabilization Magnesia – MgO Magnesia cements: MOC, MPC Electric arc furnace dust (EAFD)

Stabilization of EAFD

Method

Results

Conclusions



31st SEGH 2015

Industrial solid waste management in Greece

- Recycling
- Thermal treatment

- Stabilization/solidification aims to convert hazardous substances to more stable chemical forms that are much less soluble, mobile and toxic, using various additives, such as portland and magnesia cements.
- Stabilized wastes can be safely disposed into the environment with minimal risk of leaching toxic substances and polluting surface water or groundwater resources.

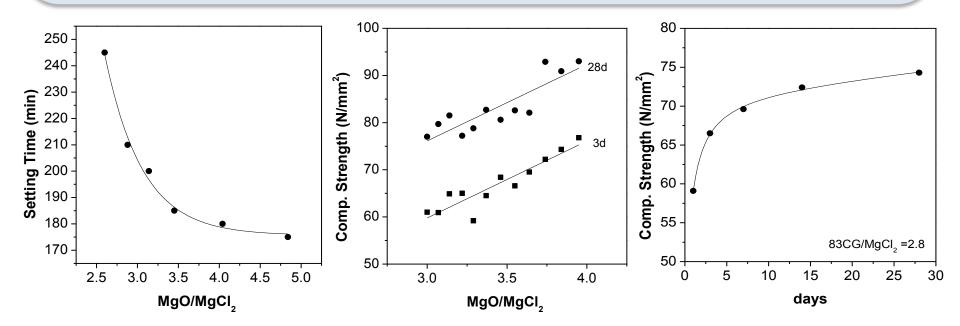
Magnesia – MgO

- MgO is a Grecian Magnesite S.A. product: microcrystalline caustic calcined MgO
- ➢ Nominal purity 83.41% (grade 83 CG)
- Impurities: CaO, SiO₂, Al₂O₃, Fe₂O₃, SO₃
- Specific surface area 32 m²/g, milled below 200 μm

- MgO: A widest spectrum of applications, i.e. agricultural, industrial & chemical, construction, steel & refractories & environmental
- Environmental applications: Flue gas treatment, soil decontamination and remediation, domestic and industrial solid waste treatment

Magnesia cements

31st SEGH 2015


- > Two types of magnesia cements:
- (a) Magnesium Oxychloride Cement (MOC) or Sorel Cement:

 $5MgO + MgCl_2 + 13H_2O \rightarrow 5Mg(OH)_2.MgCl_2.8H_2O$ (phase 5)

(b) Magnesium phosphate cement (MPC):

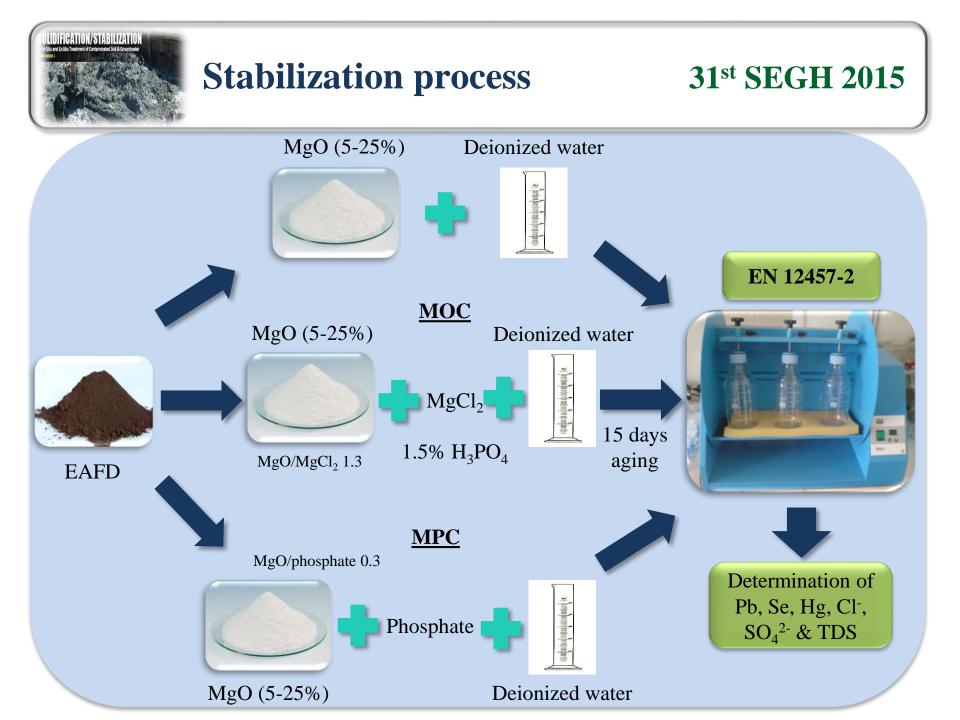
MgO + phosphate + $H_2O \rightarrow$ phosphate phase

- > MOC, MPC: High strength, abrasion resistance & bonding
- MOC: lower water resistance than MPC

Electric arc furnace dust

31st SEGH 2015

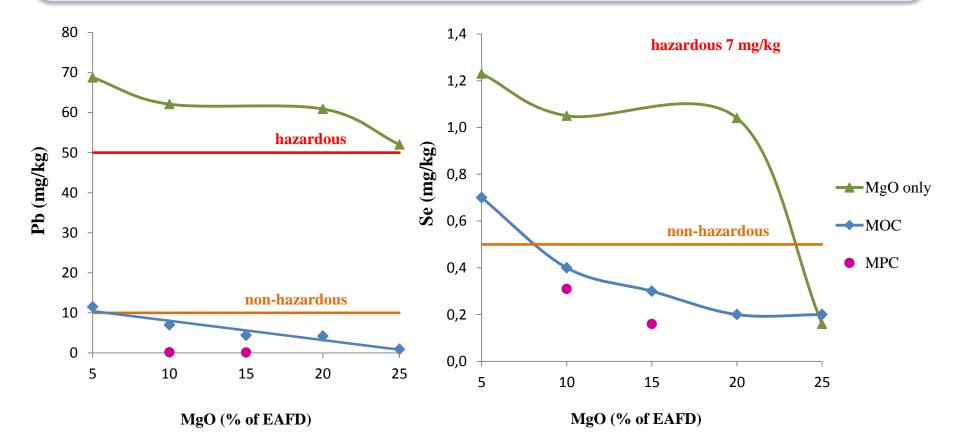
- EAFD is a by-product of steel production
- It contains Zn, Fe, Pb & Ca among others
- > 15–20 kg EAFD/t of steel is generated


Table 1. Typical composition of EAFD

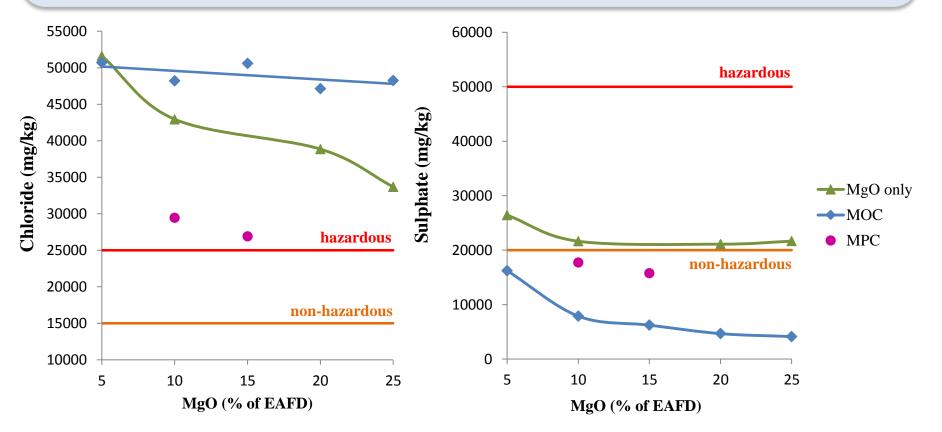
% wt. dry substance													
Al_2O_3	CaO	Fe ₂ O ₃	K ₂ O	MgO	MnO	PbO	SiO_2	ZnO	LOI				
0.9	4.6	33.9	1.4	0.7	3.3	6.2	4.1	34.9	7.8				

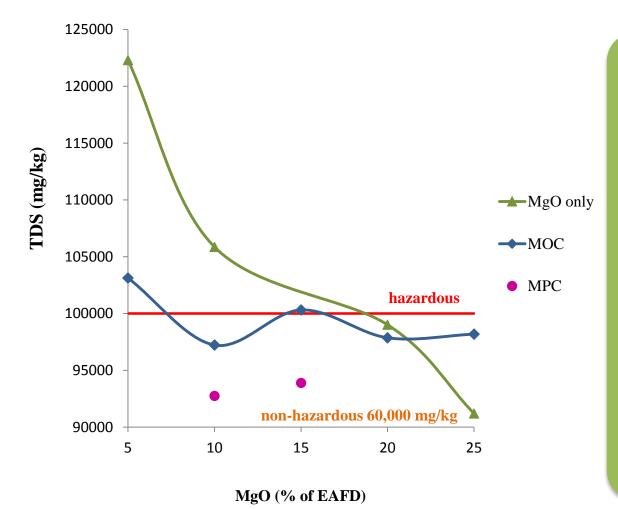
The current situation in Greece:

- Hydrometallurgical processes for heavy metal recovery from EAFD (Zn, Pb, Fe) have been developed, but the annual produced volume is considered fragmentary for a profitable operation.
- Approximately 30,000–40,000 t/year is produced.
- Almost the entire quantity of EAFD is transported abroad.


Characterization of EAFD													31 st SEGH 2015			
FAFDImage: Deconized water																
mS/cm mV										EAFD cannot be						
рН			EC	Redox									ccepted in hazardous waste landfills			
12.3			18.0	+4	41	EU Decision 2003/33/EC							waste faildriffs			
	mg/kg of dry substance															
As	Ba	Cd	Cr total	Cu	Hg	Ni	Pb	Sb	Se	Zn	F -	Cl	SO ₄ ²⁻	DOC	TDS	
0.08	2.9	nd	4.4	nd	1.5	nd	650	0.03	1.2	nd	31	34000	21200) 114 (126500	
nd: no	t dete	ected														

Stabilization - Results


- ▶ MgO only: pH ~12.0, MOC: pH 9.8-12.3, MPC: pH 11.4
- MOC, MPC: Hg nd, MgO only: Hg 0.01-0.06 < limit of inert waste
- MgO acts as a buffering agent
- MOC, MPC: very good bonding behavior, significantly decreased leaching of Pb, Se, Hg


Stabilization - Results

- MOC increases Cl⁻ leaching
- > MOC, MPC: poor water stability
- MPC: Dilution of EAFD with sand (1:1) resulted in a stabilized waste accepted in non-hazardous waste landfills (Cl⁻ 21,000 mg/kg)
- > MOC, MPC: SO_4^{2-} < limit of non-hazardous waste

Stabilization - Results

- TDS can be used alternatively to the values for SO_4^{2-} and Cl^- .
- MOC: TDS below the limit value for waste acceptable in hazardous waste landfills above 10% MgO addition.
- MPC: TDS < limit hazardous waste
- MPC: TDS 66,600 mg/kg when EAFD is diluted with sand 1:1 ratio
- MgO only: TDS below the limit value for waste acceptable in hazardous waste landfills above 20% MgO addition.

Conclusions

- EAFD may pose a risk to human health and the environment, if not managed and disposed of safely.
- The proposed stabilization process, using magnesia cements (MOC, MPC), is an effective method for heavy metal immobilization.
- Pb, Hg & Se are below the maximum limits for non-hazardous waste landfills, when using MgO above 10% at magnesia cements.
- MOC increases Cl⁻ leaching, while using MPC does not increase the leached Cl⁻. Lower heavy metals leaching in the case of MPC than MOC.
- Using only MgO manages to reduce Pb leaching, but not below the limit value for non-hazardous waste landfills.

31st SEGH 2015

Acknowledgements

This research has been co-financed by the European Union (European Social Fund -ESF) and Greek national funds through the Program "PAVET" – Project: Environmental applications of magnesia and utilization of produced by-products.

Thank you for your attention